Orthounion Publications

[1-23]

 

  1. Amann, E.M., et al., Inflammatory response of mesenchymal stromal cells after in vivo exposure with selected trauma-related factors and polytrauma serum. PLoS One, 2019. 14(5): p. e0216862; Available from: https://www.ncbi.nlm.nih.gov/pubmed/31086407

 

  1. Brennan, M.A., et al., Chondrogenic and BMP-4 primings confer osteogenesis potential to human cord blood mesenchymal stromal cells delivered with biphasic calcium phosphate ceramics. Sci Rep, 2021. 11(1): p. 6751; Available from: https://www.ncbi.nlm.nih.gov/pubmed/33762629

.

 

  1. Cherubini, A., et al., FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res, 2019. 47(10): p. 5325-5340; Available from: https://www.ncbi.nlm.nih.gov/pubmed/30937446

 

  1. Cyril d’Arros, T.M., Eric Aguado, Ranieri Cancedda, Oliver Malard, Pascal Borget, Guy Daculsi, 3D moldable scaffold as a new platform for bone tissue engineering strategy with improved handling properties. Bioceramics, ed. I.A. Express. 2019.
  2. d’Arros, C., et al., Bioactivity of Biphasic Calcium Phosphate Granules, the Control of a Needle-Like Apatite Layer Formation for Further Medical Device Developments. Front Bioeng Biotechnol, 2019. 7: p. 462; Available from: https://www.ncbi.nlm.nih.gov/pubmed/32117904

 

  1. Dahlhaus, M., et al., CD90 Is Dispensable for White and Beige/Brown Adipocyte Differentiation. Int J Mol Sci, 2020. 21(21); Available from: https://www.ncbi.nlm.nih.gov/pubmed/33114405

 

  1. Gomez-Barrena, E., et al., Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury, 2020. 51 Suppl 1: p. S63-S73; Available from: https://www.ncbi.nlm.nih.gov/pubmed/32139130

 

  1. Gomez-Barrena, E., et al., A Multicentric, Open-Label, Randomized, Comparative Clinical Trial of Two Different Doses of Expanded hBM-MSCs Plus Biomaterial versus Iliac Crest Autograft, for Bone Healing in Nonunions after Long Bone Fractures: Study Protocol. Stem Cells Int, 2018. 2018: p. 6025918; Available from: https://www.ncbi.nlm.nih.gov/pubmed/29535772

 

  1. Gomez-Barrena, E., et al., Validation of a long bone fracture non-union healing score after treatment with mesenchymal stromal cells combined to biomaterials. Injury, 2020. 51 Suppl 1: p. S55-S62; Available from: https://www.ncbi.nlm.nih.gov/pubmed/32081389

 

  1. Gomez-Barrena, E., N.G. Padilla-Eguiluz, and P. Rosset, Frontiers in non-union research. EFORT Open Rev, 2020. 5(10): p. 574-583; Available from: https://www.ncbi.nlm.nih.gov/pubmed/33204499

 

  1. Gomez-Barrena, E., et al., Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials, 2019. 196: p. 100-108; Available from: https://www.ncbi.nlm.nih.gov/pubmed/29598897

 

  1. Gomez-Barrena, E., et al., Both younger and elderly patients in pain are willing to undergo knee replacement despite the COVID-19 pandemic: a study on surgical waiting lists. Knee Surg Sports Traumatol Arthrosc, 2021; Available from: https://www.ncbi.nlm.nih.gov/pubmed/34014339.

 

  1. Hüfner, V., et al., GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor. Methods Mol Biol, 2022. 1416.

 

  1. Humbert, P., et al., Immune Modulation by Transplanted Calcium Phosphate Biomaterials and Human Mesenchymal Stromal Cells in Bone Regeneration. Front Immunol, 2019. 10: p. 663; Available from: https://www.ncbi.nlm.nih.gov/pubmed/31001270

 

  1. Humbert, P., et al., Apoptotic mesenchymal stromal cells support osteoclastogenesis while inhibiting multinucleated giant cells formation in vitro. Sci Rep, 2021. 11(1): p. 12144; Available from: https://www.ncbi.nlm.nih.gov/pubmed/34108508

 

  1. Mastrolia, I., et al., Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl Med, 2019. 8(11): p. 1135-1148; Available from: https://www.ncbi.nlm.nih.gov/pubmed/31313507

 

  1. Padilla-Eguiluz, N.G. and E. Gomez-Barrena, Epidemiology of long bone non-unions in Spain. Injury, 2021; Available from: https://www.ncbi.nlm.nih.gov/pubmed/33640162

 

  1. Rojewski, M.T., et al., Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Cytotherapy, 2019. 21(4): p. 468-482; Available from: https://www.ncbi.nlm.nih.gov/pubmed/30926359

 

  1. Salvadori, M., et al., Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation. Mol Ther Methods Clin Dev, 2019. 14: p. 1-15; Available from: https://www.ncbi.nlm.nih.gov/pubmed/31236426

 

  1. Strunk, D., et al., International Forum on GMP-grade human platelet lysate for cell propagation. Vox Sang, 2018. 113(1): p. e1-e25; Available from: https://www.ncbi.nlm.nih.gov/pubmed/29071726.

 

  1. Vidal, L., et al., Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Frontiers in Bioengineering and Biotechnology, 2020. 8; Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.00061.

 

  1. Vidal, L., et al., Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Scientific Reports, 2020. 10(1): p. 7068; Available from: https://doi.org/10.1038/s41598-020-63742-w.

 

  1. Vigano, M., R. Giordano, and L. Lazzari, Challenges of running a GMP facility for regenerative medicine in a public hospital. Regen Med, 2017. 12(7): p. 803-813; Available from: https://www.ncbi.nlm.nih.gov/pubmed/29115906.